Math 2050, HW 2

(1) If S is a non-empty subset of \mathbb{R}. Show that S is bounded if and only if there exists a closed and bounded interval I such that $S \subseteq I$.
(2) Let $f, g: S \rightarrow \mathbb{R}$ be two real-valued functions. Suppose that $\sup \{f(x)+g(x): x \in S\}, \sup \{f(x): x \in S\}$ and $\sup \{g(x):$ $x \in S\}$ exist in \mathbb{R}. Show that
$\sup \{f(x)+g(x): x \in S\} \leq \sup \{f(x): x \in S\}+\sup \{g(x): x \in S\}$.
Show that in general \leq cannot be replaced by $=$ by providing counter-example.
(3) (a) Let $x_{1}=1$ and $x_{n+1}=x_{n}+\frac{1}{x_{n}}$ for all $n \in \mathbb{N}$. Determine whether $\left\{x_{n}\right\}$ is convergent or not.
(b) Let $x_{1}=1$ and $x_{n+1}=\sqrt{2 x_{n}}$ for all $n \in \mathbb{N}$, show that $\left\{x_{n}\right\}$ is convergent.
(4) (a) Show that $\left\{\frac{n+3}{n^{3}-2 n+4}\right\}_{n=1}^{\infty}$ is convergent.
(b) Show that $\left\{\left(5 n^{6}\right)^{\frac{1}{n}}\right\}_{n=1}^{\infty}$ is convergent.

